Hopf Algebra Equivariant Cyclic Homology and Cyclic Homology of Crossed Product Algebras
نویسندگان
چکیده
We introduce the cylindrical module A♮H, where H is a Hopf algebra with S2 = idH and A is a Hopf module algebra over H. We show that there exists a cyclic map between the cyclic module of the crossed product algebra A⋊H and ∆(A♮H), the cyclic module related to the diagonal of A♮H. In the cocommutative case, ∆(A♮H) ∼= C•(A ⋊H). Finally we approximate ∆(A♮H) by a spectral sequence and we give an interpretation of E0,E1 and E2 terms of this spectral sequence.
منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملCyclic Homology of Hopf Comodule Algebras and Hopf Module Coalgebras
In this paper we construct a cylindrical module A♮H for an Hcomodule algebra A, where the antipode of the Hopf algebra H is bijective. We show that the cyclic module associated to the diagonal of A♮H is isomorphic with the cyclic module of the crossed product algebra A ⋊H. This enables us to derive a spectral sequence for the cyclic homology of the crossed product algebra. We also construct a c...
متن کاملEquivariant Cyclic Cohomology of Hopf Module Algebras
We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).
متن کاملHopf–hochschild (co)homology of Module Algebras
Our goal in this paper is to define a version of Hochschild homology and cohomology suitable for a class of algebras admitting compatible actions of bialgebras, called “module algebras” (Definition 2.1). Our motivation lies in the following problem: for an algebra A which admits a module structure over an arbitrary bialgebra B compatible with its product structure, the Hochschild or the cyclic ...
متن کاملHopf–cyclic Homology and Relative Cyclic Homology of Hopf–galois Extensions
The determination of cyclic (co)homology of a given algebra is a quite important and difficult problem. Let us briefly recall some of the results obtained that are somehow related to our paper. The cyclic homology of group algebras over fields of characteristic 0 was computed by Burghelea, [3]. For a complete algebraic proof of Burghelea’s result the reader is referred to [19], while a relative...
متن کامل